
16.02.24, 15:43 Prompt engineering - OpenAI API

https://platform.openai.com/docs/guides/prompt-engineering/strategy-give-models-time-to-think 1/20

This guide shares strategies and tactics for getting better results from large language models

(sometimes referred to as GPT models) like GPT-4. The methods described here can

sometimes be deployed in combination for greater effect. We encourage experimentation to

find the methods that work best for you.

Some of the examples demonstrated here currently work only with our most capable model,

gpt-4 . In general, if you find that a model fails at a task and a more capable model is available

it's often worth trying again with the more capable model.

You can also explore example prompts which showcase what our models are capable of:

Prompt examples
Explore prompt examples to learn what GPT models can do

These models can’t read your mind. If outputs are too long, ask for brief replies. If outputs are

too simple, ask for expert-level writing. If you dislike the format, demonstrate the format you’d

like to see. The less the model has to guess at what you want, the more likely you’ll get it.

Tactics:

Language models can confidently invent fake answers, especially when asked about esoteric

topics or for citations and URLs. In the same way that a sheet of notes can help a student do

Prompt engineering

Six strategies for getting better results

Write clear instructions

Include details in your query to get more relevant answers

Ask the model to adopt a persona

Use delimiters to clearly indicate distinct parts of the input

Specify the steps required to complete a task

Provide examples

Specify the desired length of the output

Provide reference text

Overview Documentation API reference Log in Sign up 

https://platform.openai.com/docs/guides/prompt-engineering/prompt-engineering
https://platform.openai.com/examples
https://platform.openai.com/examples
https://platform.openai.com/examples
https://platform.openai.com/examples
https://platform.openai.com/examples
https://platform.openai.com/examples
https://platform.openai.com/examples
https://platform.openai.com/examples
https://platform.openai.com/docs/guides/prompt-engineering/six-strategies-for-getting-better-results
https://platform.openai.com/docs/guides/prompt-engineering/write-clear-instructions
https://platform.openai.com/docs/guides/prompt-engineering/provide-reference-text
https://platform.openai.com/docs/guides/prompt-engineering/tactic-include-details-in-your-query-to-get-more-relevant-answers
https://platform.openai.com/docs/guides/prompt-engineering/tactic-ask-the-model-to-adopt-a-persona
https://platform.openai.com/docs/guides/prompt-engineering/tactic-use-delimiters-to-clearly-indicate-distinct-parts-of-the-input
https://platform.openai.com/docs/guides/prompt-engineering/tactic-specify-the-steps-required-to-complete-a-task
https://platform.openai.com/docs/guides/prompt-engineering/tactic-provide-examples
https://platform.openai.com/docs/guides/prompt-engineering/tactic-specify-the-desired-length-of-the-output
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/signup


16.02.24, 15:43 Prompt engineering - OpenAI API

https://platform.openai.com/docs/guides/prompt-engineering/strategy-give-models-time-to-think 2/20

better on a test, providing reference text to these models can help in answering with fewer

fabrications.

Tactics:

Just as it is good practice in software engineering to decompose a complex system into a set of

modular components, the same is true of tasks submitted to a language model. Complex tasks

tend to have higher error rates than simpler tasks. Furthermore, complex tasks can often be re-

defined as a workflow of simpler tasks in which the outputs of earlier tasks are used to

construct the inputs to later tasks.

Tactics:

If asked to multiply 17 by 28, you might not know it instantly, but can still work it out with time.

Similarly, models make more reasoning errors when trying to answer right away, rather than

taking time to work out an answer. Asking for a "chain of thought" before an answer can help

the model reason its way toward correct answers more reliably.

Tactics:

Compensate for the weaknesses of the model by feeding it the outputs of other tools. For

example, a text retrieval system (sometimes called RAG or retrieval augmented generation)

can tell the model about relevant documents. A code execution engine like OpenAI's Code

Interpreter can help the model do math and run code. If a task can be done more reliably or

efficiently by a tool rather than by a language model, offload it to get the best of both.

Instruct the model to answer using a reference text

Instruct the model to answer with citations from a reference text

Split complex tasks into simpler subtasks

Use intent classification to identify the most relevant instructions for a user query

For dialogue applications that require very long conversations, summarize or filter
previous dialogue

Summarize long documents piecewise and construct a full summary recursively

Give the model time to "think"

Instruct the model to work out its own solution before rushing to a conclusion

Use inner monologue or a sequence of queries to hide the model's reasoning process

Ask the model if it missed anything on previous passes

Use external tools

Overview Documentation API reference Log in Sign up 

https://platform.openai.com/docs/guides/prompt-engineering/split-complex-tasks-into-simpler-subtasks
https://platform.openai.com/docs/guides/prompt-engineering/give-the-model-time-to-think
https://platform.openai.com/docs/guides/prompt-engineering/use-external-tools
https://platform.openai.com/docs/guides/prompt-engineering/tactic-instruct-the-model-to-answer-using-a-reference-text
https://platform.openai.com/docs/guides/prompt-engineering/tactic-instruct-the-model-to-answer-with-citations-from-a-reference-text
https://platform.openai.com/docs/guides/prompt-engineering/tactic-use-intent-classification-to-identify-the-most-relevant-instructions-for-a-user-query
https://platform.openai.com/docs/guides/prompt-engineering/tactic-for-dialogue-applications-that-require-very-long-conversations-summarize-or-filter-previous-dialogue
https://platform.openai.com/docs/guides/prompt-engineering/tactic-for-dialogue-applications-that-require-very-long-conversations-summarize-or-filter-previous-dialogue
https://platform.openai.com/docs/guides/prompt-engineering/tactic-summarize-long-documents-piecewise-and-construct-a-full-summary-recursively
https://platform.openai.com/docs/guides/prompt-engineering/tactic-instruct-the-model-to-work-out-its-own-solution-before-rushing-to-a-conclusion
https://platform.openai.com/docs/guides/prompt-engineering/tactic-use-inner-monologue-or-a-sequence-of-queries-to-hide-the-model-s-reasoning-process
https://platform.openai.com/docs/guides/prompt-engineering/tactic-ask-the-model-if-it-missed-anything-on-previous-passes
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/signup


16.02.24, 15:43 Prompt engineering - OpenAI API

https://platform.openai.com/docs/guides/prompt-engineering/strategy-give-models-time-to-think 3/20

Tactics:

Improving performance is easier if you can measure it. In some cases a modification to a

prompt will achieve better performance on a few isolated examples but lead to worse overall

performance on a more representative set of examples. Therefore to be sure that a change is

net positive to performance it may be necessary to define a comprehensive test suite (also

known an as an "eval").

Tactic:

Each of the strategies listed above can be instantiated with specific tactics. These tactics are

meant to provide ideas for things to try. They are by no means fully comprehensive, and you

should feel free to try creative ideas not represented here.

In order to get a highly relevant response, make sure that requests provide any important

details or context. Otherwise you are leaving it up to the model to guess what you mean.

Worse Better

How do I add numbers

in Excel?

How do I add up a row of dollar amounts in Excel? I want to do this

automatically for a whole sheet of rows with all the totals ending up on

the right in a column called "Total".

Who’s president? Who was the president of Mexico in 2021, and how frequently are

elections held?

Write code to

calculate the

Fibonacci sequence.

Write a TypeScript function to efficiently calculate the Fibonacci

sequence. Comment the code liberally to explain what each piece

does and why it's written that way.

Use embeddings-based search to implement efficient knowledge retrieval

Use code execution to perform more accurate calculations or call external APIs

Give the model access to specific functions

Test changes systematically

Evaluate model outputs with reference to gold-standard answers

Tactics

Strategy: Write clear instructions

Tactic: Include details in your query to get more relevant answers

Overview Documentation API reference Log in Sign up 

https://platform.openai.com/docs/guides/prompt-engineering/test-changes-systematically
https://platform.openai.com/docs/guides/prompt-engineering/tactics
https://platform.openai.com/docs/guides/prompt-engineering/strategy-write-clear-instructions
https://platform.openai.com/docs/guides/prompt-engineering/tactic-include-details-in-your-query-to-get-more-relevant-answers
https://platform.openai.com/docs/guides/prompt-engineering/tactic-use-embeddings-based-search-to-implement-efficient-knowledge-retrieval
https://platform.openai.com/docs/guides/prompt-engineering/tactic-use-code-execution-to-perform-more-accurate-calculations-or-call-external-apis
https://platform.openai.com/docs/guides/prompt-engineering/tactic-give-the-model-access-to-specific-functions
https://platform.openai.com/docs/guides/prompt-engineering/tactic-evaluate-model-outputs-with-reference-to-gold-standard-answers
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/signup


16.02.24, 15:43 Prompt engineering - OpenAI API

https://platform.openai.com/docs/guides/prompt-engineering/strategy-give-models-time-to-think 4/20

Summarize the

meeting notes.

Summarize the meeting notes in a single paragraph. Then write a

markdown list of the speakers and each of their key points. Finally, list

the next steps or action items suggested by the speakers, if any.

The system message can be used to specify the persona used by the model in its replies.

SYSTEM When I ask for help to write something, you will reply with a document that 

contains at least one joke or playful comment in every paragraph.

USER Write a thank you note to my steel bolt vendor for getting the delivery in on 

time and in short notice. This made it possible for us to deliver an important 

order.

Open in Playground

Delimiters like triple quotation marks, XML tags, section titles, etc. can help demarcate

sections of text to be treated differently.

USER Summarize the text delimited by triple quotes with a haiku.

"""insert text here"""

Open in Playground

SYSTEM You will be provided with a pair of articles (delimited with XML tags) about 

the same topic. First summarize the arguments of each article. Then 

indicate which of them makes a better argument and explain why.

USER <article> insert first article here </article>

<article> insert second article here </article>

Open in Playground

Tactic: Ask the model to adopt a persona

Tactic: Use delimiters to clearly indicate distinct parts of the input

Overview Documentation API reference Log in Sign up 

https://platform.openai.com/docs/guides/prompt-engineering/tactic-ask-the-model-to-adopt-a-persona
https://platform.openai.com/playground/p/default-playful-thank-you-note?mode=chat
https://platform.openai.com/docs/guides/prompt-engineering/tactic-use-delimiters-to-clearly-indicate-distinct-parts-of-the-input
https://platform.openai.com/playground/p/default-delimiters-1?mode=chat
https://platform.openai.com/playground/p/default-delimiters-2?mode=chat
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/signup


16.02.24, 15:43 Prompt engineering - OpenAI API

https://platform.openai.com/docs/guides/prompt-engineering/strategy-give-models-time-to-think 5/20

SYSTEM You will be provided with a thesis abstract and a suggested title for it. The 

thesis title should give the reader a good idea of the topic of the thesis but 

should also be eye-catching. If the title does not meet these criteria, suggest 

5 alternatives.

USER Abstract: insert abstract here

Title: insert title here

Open in Playground

For straightforward tasks such as these, using delimiters might not make a difference in the

output quality. However, the more complex a task is the more important it is to disambiguate

task details. Don’t make the model work to understand exactly what you are asking of them.

Some tasks are best specified as a sequence of steps. Writing the steps out explicitly can make

it easier for the model to follow them.

SYSTEM Use the following step-by-step instructions to respond to user inputs.

Step 1 - The user will provide you with text in triple quotes. Summarize this 

text in one sentence with a prefix that says "Summary: ".

Step 2 - Translate the summary from Step 1 into Spanish, with a prefix that 

says "Translation: ".

USER """insert text here"""

Open in Playground

Providing general instructions that apply to all examples is generally more efficient than

demonstrating all permutations of a task by example, but in some cases providing examples

may be easier. For example, if you intend for the model to copy a particular style of responding

to user queries which is difficult to describe explicitly. This is known as "few-shot" prompting.

SYSTEM Answer in a consistent style.

USER Teach me about patience.

Tactic: Specify the steps required to complete a task

Tactic: Provide examples

Overview Documentation API reference Log in Sign up 

https://platform.openai.com/playground/p/default-delimiters-3?mode=chat
https://platform.openai.com/docs/guides/prompt-engineering/tactic-specify-the-steps-required-to-complete-a-task
https://platform.openai.com/playground/p/default-step-by-step-summarize-and-translate?mode=chat
https://platform.openai.com/docs/guides/prompt-engineering/tactic-provide-examples
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/signup


16.02.24, 15:43 Prompt engineering - OpenAI API

https://platform.openai.com/docs/guides/prompt-engineering/strategy-give-models-time-to-think 6/20

ASSISTANT The river that carves the deepest valley flows from a modest spring; the 

grandest symphony originates from a single note; the most intricate 

tapestry begins with a solitary thread.

USER Teach me about the ocean.

Open in Playground

You can ask the model to produce outputs that are of a given target length. The targeted

output length can be specified in terms of the count of words, sentences, paragraphs, bullet

points, etc. Note however that instructing the model to generate a specific number of words

does not work with high precision. The model can more reliably generate outputs with a

specific number of paragraphs or bullet points.

USER Summarize the text delimited by triple quotes in about 50 words.

"""insert text here"""

Open in Playground

USER Summarize the text delimited by triple quotes in 2 paragraphs.

"""insert text here"""

Open in Playground

USER Summarize the text delimited by triple quotes in 3 bullet points.

"""insert text here"""

Open in Playground

If we can provide a model with trusted information that is relevant to the current query, then we

can instruct the model to use the provided information to compose its answer.

Tactic: Specify the desired length of the output

Strategy: Provide reference text

Tactic: Instruct the model to answer using a reference text

Overview Documentation API reference Log in Sign up 

https://platform.openai.com/playground/p/default-chat-few-shot?mode=chat
https://platform.openai.com/docs/guides/prompt-engineering/tactic-specify-the-desired-length-of-the-output
https://platform.openai.com/playground/p/default-summarize-text-50-words?mode=chat
https://platform.openai.com/playground/p/default-summarize-text-2-paragraphs?mode=chat
https://platform.openai.com/playground/p/default-summarize-text-3-bullet-points?mode=chat
https://platform.openai.com/docs/guides/prompt-engineering/strategy-provide-reference-text
https://platform.openai.com/docs/guides/prompt-engineering/tactic-instruct-the-model-to-answer-using-a-reference-text
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/signup


16.02.24, 15:43 Prompt engineering - OpenAI API

https://platform.openai.com/docs/guides/prompt-engineering/strategy-give-models-time-to-think 7/20

SYSTEM Use the provided articles delimited by triple quotes to answer questions. If 

the answer cannot be found in the articles, write "I could not find an answer."

USER <insert articles, each delimited by triple quotes>

Question: <insert question here>

Open in Playground

Given that all models have limited context windows, we need some way to dynamically lookup

information that is relevant to the question being asked. Embeddings can be used to

implement efficient knowledge retrieval. See the tactic "Use embeddings-based search to

implement efficient knowledge retrieval" for more details on how to implement this.

If the input has been supplemented with relevant knowledge, it's straightforward to request

that the model add citations to its answers by referencing passages from provided documents.

Note that citations in the output can then be verified programmatically by string matching

within the provided documents.

SYSTEM You will be provided with a document delimited by triple quotes and a 

question. Your task is to answer the question using only the provided 

document and to cite the passage(s) of the document used to answer the 

question. If the document does not contain the information needed to 

answer this question then simply write: "Insufficient information." If an 

answer to the question is provided, it must be annotated with a citation. Use 

the following format for to cite relevant passages ({"citation": …}).

USER """<insert document here>"""

Question: <insert question here>

Open in Playground

Tactic: Instruct the model to answer with citations from a reference text

Strategy: Split complex tasks into simpler subtasks

Tactic: Use intent classification to identify the most relevant instructions for a user
query

Overview Documentation API reference Log in Sign up 

https://platform.openai.com/playground/p/default-answer-from-retrieved-documents?mode=chat
https://platform.openai.com/docs/guides/embeddings/what-are-embeddings
https://platform.openai.com/docs/guides/prompt-engineering/tactic-use-embeddings-based-search-to-implement-efficient-knowledge-retrieval
https://platform.openai.com/docs/guides/prompt-engineering/tactic-use-embeddings-based-search-to-implement-efficient-knowledge-retrieval
https://platform.openai.com/docs/guides/prompt-engineering/tactic-instruct-the-model-to-answer-with-citations-from-a-reference-text
https://platform.openai.com/playground/p/default-answer-with-citation?mode=chat
https://platform.openai.com/docs/guides/prompt-engineering/strategy-split-complex-tasks-into-simpler-subtasks
https://platform.openai.com/docs/guides/prompt-engineering/tactic-use-intent-classification-to-identify-the-most-relevant-instructions-for-a-user-query
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/signup


16.02.24, 15:43 Prompt engineering - OpenAI API

https://platform.openai.com/docs/guides/prompt-engineering/strategy-give-models-time-to-think 8/20

For tasks in which lots of independent sets of instructions are needed to handle different cases

it can be beneficial to first classify the type of query and to use that classification to determine

which instructions are needed. This can be achieved by defining fixed categories and

hardcoding instructions that are relevant for handling tasks in a given category. This process

can also be applied recursively to decompose a task into a sequence of stages. The advantage

of this approach is that each query will contain only those instructions that are required to

perform the next stage of a task which can result in lower error rates compared to using a

single query to perform the whole task. This can also result in lower costs since larger prompts

cost more to run (see pricing information).

Suppose for example that for a customer service application, queries could be usefully

classified as follows:

SYSTEM You will be provided with customer service queries. Classify each query into 

a primary category and a secondary category. Provide your output in json 

format with the keys: primary and secondary.

Primary categories: Billing, Technical Support, Account Management, or 

General Inquiry.

Billing secondary categories:

- Unsubscribe or upgrade

- Add a payment method

- Explanation for charge

- Dispute a charge

Technical Support secondary categories:

- Troubleshooting

- Device compatibility

- Software updates

Account Management secondary categories:

- Password reset

- Update personal information

- Close account

- Account security

General Inquiry secondary categories:

- Product information

- Pricing

- Feedback

- Speak to a human

Overview Documentation API reference Log in Sign up 

https://openai.com/pricing
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/signup


16.02.24, 15:43 Prompt engineering - OpenAI API

https://platform.openai.com/docs/guides/prompt-engineering/strategy-give-models-time-to-think 9/20

USER I need to get my internet working again.

Open in Playground

Based on the classification of the customer query, a set of more specific instructions can be

provided to a model for it to handle next steps. For example, suppose the customer requires

help with "troubleshooting".

SYSTEM You will be provided with customer service inquiries that require 

troubleshooting in a technical support context. Help the user by:

- Ask them to check that all cables to/from the router are connected. Note 

that it is common for cables to come loose over time.

- If all cables are connected and the issue persists, ask them which router 

model they are using

- Now you will advise them how to restart their device:

-- If the model number is MTD-327J, advise them to push the red button and 

hold it for 5 seconds, then wait 5 minutes before testing the connection.

-- If the model number is MTD-327S, advise them to unplug and replug it, 

then wait 5 minutes before testing the connection.

- If the customer's issue persists after restarting the device and waiting 5 

minutes, connect them to IT support by outputting {"IT support requested"}.

- If the user starts asking questions that are unrelated to this topic then 

confirm if they would like to end the current chat about troubleshooting and 

classify their request according to the following scheme:

<insert primary/secondary classification scheme from above here>

USER I need to get my internet working again.

Open in Playground

Notice that the model has been instructed to emit special strings to indicate when the state of

the conversation changes. This enables us to turn our system into a state machine where the

state determines which instructions are injected. By keeping track of state, what instructions

are relevant at that state, and also optionally what state transitions are allowed from that state,

we can put guardrails around the user experience that would be hard to achieve with a less

structured approach.

Tactic: For dialogue applications that require very long conversations, summarize
or filter previous dialogue

Overview Documentation API reference Log in Sign up 

https://platform.openai.com/playground/p/default-decomposition-by-intent-classification-1?mode=chat
https://platform.openai.com/playground/p/default-decomposition-by-intent-classification-2?mode=chat
https://platform.openai.com/docs/guides/prompt-engineering/tactic-for-dialogue-applications-that-require-very-long-conversations-summarize-or-filter-previous-dialogue
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/signup


16.02.24, 15:43 Prompt engineering - OpenAI API

https://platform.openai.com/docs/guides/prompt-engineering/strategy-give-models-time-to-think 10/20

Since models have a fixed context length, dialogue between a user and an assistant in which

the entire conversation is included in the context window cannot continue indefinitely.

There are various workarounds to this problem, one of which is to summarize previous turns in

the conversation. Once the size of the input reaches a predetermined threshold length, this

could trigger a query that summarizes part of the conversation and the summary of the prior

conversation could be included as part of the system message. Alternatively, prior

conversation could be summarized asynchronously in the background throughout the entire

conversation.

An alternative solution is to dynamically select previous parts of the conversation that are most

relevant to the current query. See the tactic "Use embeddings-based search to implement

efficient knowledge retrieval".

Since models have a fixed context length, they cannot be used to summarize a text longer than

the context length minus the length of the generated summary in a single query.

To summarize a very long document such as a book we can use a sequence of queries to

summarize each section of the document. Section summaries can be concatenated and

summarized producing summaries of summaries. This process can proceed recursively until

an entire document is summarized. If it’s necessary to use information about earlier sections in

order to make sense of later sections, then a further trick that can be useful is to include a

running summary of the text that precedes any given point in the book while summarizing

content at that point. The effectiveness of this procedure for summarizing books has been

studied in previous research by OpenAI using variants of GPT-3.

Sometimes we get better results when we explicitly instruct the model to reason from first

principles before coming to a conclusion. Suppose for example we want a model to evaluate a

student’s solution to a math problem. The most obvious way to approach this is to simply ask

the model if the student's solution is correct or not.

SYSTEM Determine if the student's solution is correct or not.

USER Problem Statement: I'm building a solar power installation and I need help 

working out the financials.

- Land costs $100 / square foot

Tactic: Summarize long documents piecewise and construct a full summary
recursively

Strategy: Give models time to "think"

Tactic: Instruct the model to work out its own solution before rushing to a
conclusion

Overview Documentation API reference Log in Sign up 

https://platform.openai.com/docs/guides/prompt-engineering/tactic-use-embeddings-based-search-to-implement-efficient-knowledge-retrieval
https://platform.openai.com/docs/guides/prompt-engineering/tactic-use-embeddings-based-search-to-implement-efficient-knowledge-retrieval
https://platform.openai.com/docs/guides/prompt-engineering/tactic-summarize-long-documents-piecewise-and-construct-a-full-summary-recursively
https://openai.com/research/summarizing-books
https://platform.openai.com/docs/guides/prompt-engineering/strategy-give-models-time-to-think
https://platform.openai.com/docs/guides/prompt-engineering/tactic-instruct-the-model-to-work-out-its-own-solution-before-rushing-to-a-conclusion
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/signup


16.02.24, 15:43 Prompt engineering - OpenAI API

https://platform.openai.com/docs/guides/prompt-engineering/strategy-give-models-time-to-think 11/20

- I can buy solar panels for $250 / square foot

- I negotiated a contract for maintenance that will cost me a flat $100k per 

year, and an additional $10 / square foot

What is the total cost for the first year of operations as a function of the 

number of square feet.

Student's Solution: Let x be the size of the installation in square feet.

1. Land cost: 100x

2. Solar panel cost: 250x

3. Maintenance cost: 100,000 + 100x

Total cost: 100x + 250x + 100,000 + 100x = 450x + 100,000

ASSISTANT The student's solution is correct.

Open in Playground

But the student's solution is actually not correct! We can get the model to successfully notice

this by prompting the model to generate its own solution first.

SYSTEM First work out your own solution to the problem. Then compare your solution 

to the student's solution and evaluate if the student's solution is correct or 

not. Don't decide if the student's solution is correct until you have done the 

problem yourself.

USER Problem Statement: I'm building a solar power installation and I need help 

working out the financials.

- Land costs $100 / square foot

- I can buy solar panels for $250 / square foot

- I negotiated a contract for maintenance that will cost me a flat $100k per 

year, and an additional $10 / square foot

What is the total cost for the first year of operations as a function of the 

number of square feet.

Student's Solution: Let x be the size of the installation in square feet.

1. Land cost: 100x

2. Solar panel cost: 250x

3. Maintenance cost: 100,000 + 100x

Total cost: 100x + 250x + 100,000 + 100x = 450x + 100,000

ASSISTANT Let x be the size of the installation in square feet.

1. Land cost: 100x

2. Solar panel cost: 250x

3. Maintenance cost: 100,000 + 10x

Overview Documentation API reference Log in Sign up 

https://platform.openai.com/playground/p/default-rushing-to-a-conclusion?mode=chat
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/signup


16.02.24, 15:43 Prompt engineering - OpenAI API

https://platform.openai.com/docs/guides/prompt-engineering/strategy-give-models-time-to-think 12/20

Total cost: 100x + 250x + 100,000 + 10x = 360x + 100,000

The student's solution is incorrect. They made an error in the maintenance 

cost calculation, using 100x instead of 10x. The correct total cost for the first 

year of operations is 360x + 100,000.

Open in Playground

The previous tactic demonstrates that it is sometimes important for the model to reason in

detail about a problem before answering a specific question. For some applications, the

reasoning process that a model uses to arrive at a final answer would be inappropriate to share

with the user. For example, in tutoring applications we may want to encourage students to work

out their own answers, but a model’s reasoning process about the student’s solution could

reveal the answer to the student.

Inner monologue is a tactic that can be used to mitigate this. The idea of inner monologue is to

instruct the model to put parts of the output that are meant to be hidden from the user into a

structured format that makes parsing them easy. Then before presenting the output to the

user, the output is parsed and only part of the output is made visible.

SYSTEM Follow these steps to answer the user queries.

Step 1 - First work out your own solution to the problem. Don't rely on the 

student's solution since it may be incorrect. Enclose all your work for this 

step within triple quotes (""").

Step 2 - Compare your solution to the student's solution and evaluate if the 

student's solution is correct or not. Enclose all your work for this step within 

triple quotes (""").

Step 3 - If the student made a mistake, determine what hint you could give 

the student without giving away the answer. Enclose all your work for this 

step within triple quotes (""").

Step 4 - If the student made a mistake, provide the hint from the previous 

step to the student (outside of triple quotes). Instead of writing "Step 4 - ..." 

write "Hint:".

USER Problem Statement: <insert problem statement>

Tactic: Use inner monologue or a sequence of queries to hide the model's
reasoning process

Overview Documentation API reference Log in Sign up 

https://platform.openai.com/playground/p/default-avoid-rushing-to-a-conclusion?mode=chat
https://platform.openai.com/docs/guides/prompt-engineering/tactic-use-inner-monologue-or-a-sequence-of-queries-to-hide-the-model-s-reasoning-process
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/signup


16.02.24, 15:43 Prompt engineering - OpenAI API

https://platform.openai.com/docs/guides/prompt-engineering/strategy-give-models-time-to-think 13/20

Student Solution: <insert student solution>

Open in Playground

Alternatively, this can be achieved with a sequence of queries in which all except the last have

their output hidden from the end user.

First, we can ask the model to solve the problem on its own. Since this initial query doesn't

require the student’s solution, it can be omitted. This provides the additional advantage that

there is no chance that the model’s solution will be biased by the student’s attempted solution.

USER <insert problem statement>

Open in Playground

Next, we can have the model use all available information to assess the correctness of the

student’s solution.

SYSTEM Compare your solution to the student's solution and evaluate if the student's 

solution is correct or not.

USER Problem statement: """<insert problem statement>"""

Your solution: """<insert model generated solution>"""

Student’s solution: """<insert student's solution>"""

Open in Playground

Finally, we can let the model use its own analysis to construct a reply in the persona of a helpful

tutor.

SYSTEM You are a math tutor. If the student made an error, offer a hint to the student 

in a way that does not reveal the answer. If the student did not make an error, 

simply offer them an encouraging comment.

USER Problem statement: """<insert problem statement>"""

Your solution: """<insert model generated solution>"""

Student’s solution: """<insert student's solution>"""

Overview Documentation API reference Log in Sign up 

https://platform.openai.com/playground/p/default-inner-monologue?mode=chat
https://platform.openai.com/playground/p/default-query-sequence-1?mode=chat
https://platform.openai.com/playground/p/default-query-sequence-2?mode=chat
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/signup


16.02.24, 15:43 Prompt engineering - OpenAI API

https://platform.openai.com/docs/guides/prompt-engineering/strategy-give-models-time-to-think 14/20

Analysis: """<insert model generated analysis from previous step>"""

Open in Playground

Suppose that we are using a model to list excerpts from a source which are relevant to a

particular question. After listing each excerpt the model needs to determine if it should start

writing another or if it should stop. If the source document is large, it is common for a model to

stop too early and fail to list all relevant excerpts. In that case, better performance can often be

obtained by prompting the model with followup queries to find any excerpts it missed on

previous passes.

SYSTEM You will be provided with a document delimited by triple quotes. Your task is 

to select excerpts which pertain to the following question: "What significant 

paradigm shifts have occurred in the history of artificial intelligence."

Ensure that excerpts contain all relevant context needed to interpret them - 

in other words don't extract small snippets that are missing important 

context. Provide output in JSON format as follows:

[{"excerpt": "..."},

...

{"excerpt": "..."}]

USER """<insert document here>"""

ASSISTANT [{"excerpt": "the model writes an excerpt here"},

...

{"excerpt": "the model writes another excerpt here"}]

USER Are there more relevant excerpts? Take care not to repeat excerpts. Also 

ensure that excerpts contain all relevant context needed to interpret them - 

in other words don't extract small snippets that are missing important 

context.

Open in Playground

Tactic: Ask the model if it missed anything on previous passes

Strategy: Use external tools

Tactic: Use embeddings-based search to implement efficient knowledge retrieval

Overview Documentation API reference Log in Sign up 

https://platform.openai.com/playground/p/default-query-sequence-3?mode=chat
https://platform.openai.com/docs/guides/prompt-engineering/tactic-ask-the-model-if-it-missed-anything-on-previous-passes
https://platform.openai.com/playground/p/default-2nd-pass?mode=chat
https://platform.openai.com/docs/guides/prompt-engineering/strategy-use-external-tools
https://platform.openai.com/docs/guides/prompt-engineering/tactic-use-embeddings-based-search-to-implement-efficient-knowledge-retrieval
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/signup


16.02.24, 15:43 Prompt engineering - OpenAI API

https://platform.openai.com/docs/guides/prompt-engineering/strategy-give-models-time-to-think 15/20

A model can leverage external sources of information if provided as part of its input. This can

help the model to generate more informed and up-to-date responses. For example, if a user

asks a question about a specific movie, it may be useful to add high quality information about

the movie (e.g. actors, director, etc…) to the model’s input. Embeddings can be used to

implement efficient knowledge retrieval, so that relevant information can be added to the

model input dynamically at run-time.

A text embedding is a vector that can measure the relatedness between text strings. Similar or

relevant strings will be closer together than unrelated strings. This fact, along with the

existence of fast vector search algorithms means that embeddings can be used to implement

efficient knowledge retrieval. In particular, a text corpus can be split up into chunks, and each

chunk can be embedded and stored. Then a given query can be embedded and vector search

can be performed to find the embedded chunks of text from the corpus that are most related to

the query (i.e. closest together in the embedding space).

Example implementations can be found in the OpenAI Cookbook. See the tactic “Instruct the

model to use retrieved knowledge to answer queries” for an example of how to use knowledge

retrieval to minimize the likelihood that a model will make up incorrect facts.

Language models cannot be relied upon to perform arithmetic or long calculations accurately

on their own. In cases where this is needed, a model can be instructed to write and run code

instead of making its own calculations. In particular, a model can be instructed to put code that

is meant to be run into a designated format such as triple backtick. After an output is

produced, the code can be extracted and run. Finally, if necessary, the output from the code

execution engine (i.e. Python interpreter) can be provided as an input to the model for the next

query.

SYSTEM You can write and execute Python code by enclosing it in triple backticks, 

e.g. ```code goes here```. Use this to perform calculations.

USER Find all real-valued roots of the following polynomial: 3*x**5 - 5*x**4 - 

3*x**3 - 7*x - 10.

Open in Playground

Another good use case for code execution is calling external APIs. If a model is instructed in the

proper use of an API, it can write code that makes use of it. A model can be instructed in how to

use an API by providing it with documentation and/or code samples showing how to use the

API.

Tactic: Use code execution to perform more accurate calculations or call external
APIs

Overview Documentation API reference Log in Sign up 

https://cookbook.openai.com/examples/vector_databases/readme
https://platform.openai.com/docs/guides/prompt-engineering/tactic-instruct-the-model-to-answer-using-a-reference-text
https://platform.openai.com/docs/guides/prompt-engineering/tactic-instruct-the-model-to-answer-using-a-reference-text
https://platform.openai.com/docs/guides/prompt-engineering/tactic-use-code-execution-to-perform-more-accurate-calculations-or-call-external-apis
https://platform.openai.com/playground/p/default-code-execution?mode=chat
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/signup


16.02.24, 15:43 Prompt engineering - OpenAI API

https://platform.openai.com/docs/guides/prompt-engineering/strategy-give-models-time-to-think 16/20

SYSTEM You can write and execute Python code by enclosing it in triple backticks. 

Also note that you have access to the following module to help users send 

messages to their friends:

```python

import message

message.write(to="John", message="Hey, want to meetup after work?")```

Open in Playground

WARNING: Executing code produced by a model is not inherently safe and precautions
should be taken in any application that seeks to do this. In particular, a sandboxed code
execution environment is needed to limit the harm that untrusted code could cause.

The Chat Completions API allows passing a list of function descriptions in requests. This

enables models to generate function arguments according to the provided schemas.

Generated function arguments are returned by the API in JSON format and can be used to

execute function calls. Output provided by function calls can then be fed back into a model in

the following request to close the loop. This is the recommended way of using OpenAI models

to call external functions. To learn more see the function calling section in our introductory text

generation guide and more function calling examples in the OpenAI Cookbook.

Sometimes it can be hard to tell whether a change — e.g., a new instruction or a new design —

makes your system better or worse. Looking at a few examples may hint at which is better, but

with small sample sizes it can be hard to distinguish between a true improvement or random

luck. Maybe the change helps performance on some inputs, but hurts performance on others.

Evaluation procedures (or "evals") are useful for optimizing system designs. Good evals are:

DIFFERENCE TO DETECT SAMPLE SIZE NEEDED FOR 95% CONFIDENCE

30% ~10

10% ~100

3% ~1,000

Tactic: Give the model access to specific functions

Strategy: Test changes systematically

Representative of real-world usage (or at least diverse)

Contain many test cases for greater statistical power (see table below for guidelines)

Easy to automate or repeat

Overview Documentation API reference Log in Sign up 

https://platform.openai.com/playground/p/default-code-api?mode=chat
https://platform.openai.com/docs/guides/prompt-engineering/tactic-give-the-model-access-to-specific-functions
https://platform.openai.com/docs/guides/function-calling
https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models
https://platform.openai.com/docs/guides/prompt-engineering/strategy-test-changes-systematically
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/signup


16.02.24, 15:43 Prompt engineering - OpenAI API

https://platform.openai.com/docs/guides/prompt-engineering/strategy-give-models-time-to-think 17/20

DIFFERENCE TO DETECT SAMPLE SIZE NEEDED FOR 95% CONFIDENCE

1% ~10,000

Evaluation of outputs can be done by computers, humans, or a mix. Computers can automate

evals with objective criteria (e.g., questions with single correct answers) as well as some

subjective or fuzzy criteria, in which model outputs are evaluated by other model queries.

OpenAI Evals is an open-source software framework that provides tools for creating automated

evals.

Model-based evals can be useful when there exists a range of possible outputs that would be

considered equally high in quality (e.g. for questions with long answers). The boundary

between what can be realistically evaluated with a model-based eval and what requires a

human to evaluate is fuzzy and is constantly shifting as models become more capable. We

encourage experimentation to figure out how well model-based evals can work for your use

case.

Suppose it is known that the correct answer to a question should make reference to a specific

set of known facts. Then we can use a model query to count how many of the required facts are

included in the answer.

For example, using the following system message:

SYSTEM You will be provided with text delimited by triple quotes that is supposed to 

be the answer to a question. Check if the following pieces of information are 

directly contained in the answer:

- Neil Armstrong was the first person to walk on the moon.

- The date Neil Armstrong first walked on the moon was July 21, 1969.

For each of these points perform the following steps:

1 - Restate the point.

2 - Provide a citation from the answer which is closest to this point.

3 - Consider if someone reading the citation who doesn't know the topic 

could directly infer the point. Explain why or why not before making up your 

mind.

4 - Write "yes" if the answer to 3 was yes, otherwise write "no".

Finally, provide a count of how many "yes" answers there are. Provide this 

count as {"count": <insert count here>}.

Tactic: Evaluate model outputs with reference to gold-standard answers

Overview Documentation API reference Log in Sign up 

https://github.com/openai/evals
https://platform.openai.com/docs/guides/prompt-engineering/tactic-evaluate-model-outputs-with-reference-to-gold-standard-answers
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/signup


16.02.24, 15:43 Prompt engineering - OpenAI API

https://platform.openai.com/docs/guides/prompt-engineering/strategy-give-models-time-to-think 18/20

Open in Playground

Here's an example input where both points are satisfied:

SYSTEM <insert system message above>

USER """Neil Armstrong is famous for being the first human to set foot on the 

Moon. This historic event took place on July 21, 1969, during the Apollo 11 

mission."""

Open in Playground

Here's an example input where only one point is satisfied:

SYSTEM <insert system message above>

USER """Neil Armstrong made history when he stepped off the lunar module, 

becoming the first person to walk on the moon."""

Open in Playground

Here's an example input where none are satisfied:

SYSTEM <insert system message above>

USER """In the summer of '69, a voyage grand,

Apollo 11, bold as legend's hand.

Armstrong took a step, history unfurled,

"One small step," he said, for a new world."""

Open in Playground

There are many possible variants on this type of model-based eval. Consider the following

variation which tracks the kind of overlap between the candidate answer and the gold-standard

answer, and also tracks whether the candidate answer contradicts any part of the gold-

standard answer.

SYSTEM Use the following steps to respond to user inputs. Fully restate each step 

before proceeding. i.e. "Step 1: Reason...".

Overview Documentation API reference Log in Sign up 

https://platform.openai.com/docs/guides/prompt-engineering/strategy-give-models-time-to-think?mode=chat
https://platform.openai.com/playground/p/default-model-based-eval-1?mode=chat
https://platform.openai.com/playground/p/default-model-based-eval-2?mode=chat
https://platform.openai.com/playground/p/default-model-based-eval-3?mode=chat
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/signup


16.02.24, 15:43 Prompt engineering - OpenAI API

https://platform.openai.com/docs/guides/prompt-engineering/strategy-give-models-time-to-think 19/20

Step 1: Reason step-by-step about whether the information in the submitted 

answer compared to the expert answer is either: disjoint, equal, a subset, a 

superset, or overlapping (i.e. some intersection but not subset/superset).

Step 2: Reason step-by-step about whether the submitted answer 

contradicts any aspect of the expert answer.

Step 3: Output a JSON object structured like: {"type_of_overlap": "disjoint" or 

"equal" or "subset" or "superset" or "overlapping", "contradiction": true or 

false}

Open in Playground

Here's an example input with a substandard answer which nonetheless does not contradict the

expert answer:

SYSTEM <insert system message above>

USER Question: """What event is Neil Armstrong most famous for and on what date 

did it occur? Assume UTC time."""

Submitted Answer: """Didn't he walk on the moon or something?"""

Expert Answer: """Neil Armstrong is most famous for being the first person 

to walk on the moon. This historic event occurred on July 21, 1969."""

Open in Playground

Here's an example input with answer that directly contradicts the expert answer:

SYSTEM <insert system message above>

USER Question: """What event is Neil Armstrong most famous for and on what date 

did it occur? Assume UTC time."""

Submitted Answer: """On the 21st of July 1969, Neil Armstrong became the 

second person to walk on the moon, following after Buzz Aldrin."""

Expert Answer: """Neil Armstrong is most famous for being the first person 

to walk on the moon. This historic event occurred on July 21, 1969."""

Open in Playground

Overview Documentation API reference Log in Sign up 

https://platform.openai.com/docs/guides/prompt-engineering/strategy-give-models-time-to-think?mode=chat
https://platform.openai.com/playground/p/default-model-based-eval-4?mode=chat
https://platform.openai.com/playground/p/default-model-based-eval-5?mode=chat
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/signup


16.02.24, 15:43 Prompt engineering - OpenAI API

https://platform.openai.com/docs/guides/prompt-engineering/strategy-give-models-time-to-think 20/20

Here's an example input with a correct answer that also provides a bit more detail than is

necessary:

SYSTEM <insert system message above>

USER Question: """What event is Neil Armstrong most famous for and on what date 

did it occur? Assume UTC time."""

Submitted Answer: """At approximately 02�56 UTC on July 21st 1969, Neil 

Armstrong became the first human to set foot on the lunar surface, marking 

a monumental achievement in human history."""

Expert Answer: """Neil Armstrong is most famous for being the first person 

to walk on the moon. This historic event occurred on July 21, 1969."""

Open in Playground

Overview Documentation API reference Log in Sign up 

https://platform.openai.com/playground/p/default-model-based-eval-6?mode=chat
https://platform.openai.com/docs/guides/prompt-engineering/other-resources
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/signup

